Exercise 219

The cost to remove a toxin from a lake is modeled by the function $C(p)=75 p /(85-p)$, where C is the cost (in thousands of dollars) and p is the amount of toxin in a small lake (measured in parts per billion [ppb]). This model is valid only when the amount of toxin is less than 85 ppb .
a. Find the cost to remove $25 \mathrm{ppb}, 40 \mathrm{ppb}$, and 50 ppb of the toxin from the lake.
b. Find the inverse function. c. Use part b. to determine how much of the toxin is removed for $\$ 50,000$.

Solution

Part (a)

Plug in $p=25, p=40$, and $p=50$ in the given function for $C(p)$.

$$
\begin{array}{lll}
p=25 & \Rightarrow & C(25)=\frac{75(25)}{85-(25)}=31.25=\$ 31,250 \\
p=40 & \Rightarrow & C(40)=\frac{75(40)}{85-(40)} \approx 66.667=\$ 66,667 \\
p=50 & \Rightarrow & C(50)=\frac{75(50)}{85-(50)} \approx 107.143=\$ 107,143
\end{array}
$$

Part (b)

Solve the given function,

$$
C(p)=\frac{75 p}{85-p},
$$

for p.

$$
\begin{gathered}
C=\frac{75 p}{85-p} \\
C(85-p)=75 p \\
85 C-p C=75 p \\
85 C=75 p+p C \\
85 C=(75+C) p \\
\frac{85 C}{75+C}=p
\end{gathered}
$$

Therefore, the function that converts from cost to parts per billion is

$$
C^{-1}(C)=\frac{85 C}{75+C} .
$$

Part (c)

Plug in $C=50$ to the inverse function to find how many parts per billion can be removed for $\$ 50,000$.

$$
C=50 \quad \Rightarrow \quad C^{-1}(50)=\frac{85(50)}{75+(50)}=34 \mathrm{ppb}
$$

Therefore, 34 parts per billion can be removed for $\$ 50,000$.

